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SUMMARY

Two- (2D) and three-dimensional (3D) finite element analyses for flow around two square columns in
tandem arrangement were performed with various column spacings and Reynolds numbers. The
computed values were compared with the wind-tunnel results in terms of the aerodynamic characteristics
of the leeward column. In most 2D computations, strong vortices were formed behind the windward
column, irrespective of widely changed Reynolds numbers. This was different from the experimental
phenomena of equivalent spacing, so that the computed time-averaged pressure coefficients were not
identical to the experimental values except when the distance between the two columns was adequately
wide or narrow. On the other hand, in 3D computation, distinct differences in flow structures behind the
column were observed between Reynolds numbers of 103 and 104 and the pressure coefficient in the 3D
analysis with Re=104 agreed well with the experimental value. Thus, the effectiveness of 3D computa-
tions and Reynolds number effects on the flow around two square columns have been confirmed. © 1998
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the application of computational fluid dynamics (CFD) to practical design operations, the
flow around structures in tandem arrangement is one of the most challenging model configura-
tions. The flow around the adjacent bodies can be readily understood to be a complicated
stream structure, and it would have different aerodynamic characteristics from those of
isolated bodies. Until recently, the wind-tunnel test was considered to be the most reliable
method to investigate such phenomena. However, considerable efforts must be made in order
to be successful with the systematic studies using the wind-tunnel test; due to the complex flow
structures and the increasing number of parameters (e.g. shapes, arrangements, flow condition,
etc.). From such viewpoints, it is quite appropriate to explore some rational methods to
estimate characteristics of the flow past structures in tandem, and CFD can be considered to
be a countermeasure in the near future. Although several attempts [1–3] were made to solve
this problem, there are still unclear points on the applicability of numerical simulations.
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In this paper, flow field characteristics around square columns in tandem were computed as
the subject of a research topic. The fractional step (FS) finite element method [4,5] was applied
to calculations at low Reynolds numbers, while the space–time formulation by the improved
BTD (IBTD) method [6], a modified BTD [7–9] stabilization coupled with the Crank–Nicol-
son scheme, was adopted for high Reynolds numbers and 3D calculations. The aerodynamic
coefficients and the surface pressure distributions of the leeward column were computed at
various Reynolds numbers and with different column locations. The differences between 2D
and 3D computations were clarified in terms of the aerodynamic coefficients and flow
structures. Thus, the effects of Reynolds number and column arrangements, and difference in
2D and 3D flow structure around the columns, have been confirmed. Some topics on the
application of CFD to tandem structures are also discussed.

2. PROBLEM FORMULATION

The governing equations are the continuity and the Navier–Stokes equations for an incom-
pressible viscous fluid. In dimensionless form, these are

9 ·u=0 (1)

and,

(u
(t

+u ·9u+9p−Re−192u= f, (2)

where u, p, t, Re and f represent the velocity vector, pressure, time, Reynolds number and body
force, respectively, and the symbol 92 represents the Laplacian operator. The time discretiza-
tion forms of Equations (1) and (2) are defined as

9 ·un+1=0, (3)

un+1−un

Dt
+un ·9un+9pn+1−Re−192un= f, (4)

where Dt is the time increment and n represents the variables at time nDt. Applying the FS
procedure, the following pressure Poisson equation (PPE) is easily derived from Equations (3)
and (4), namely

92pn+1=
1
Dt

9un−9{un ·9un−Re−192un− f}. (5)

In the FS method, the velocity un+1 is predicted by solving pn+1 from Equation (5) and
substituting it into Equation (4). The finite element spatial discretization for both (4) and (5)
was performed using the same linear triangular elements in this study; which resulted in the
system of linear equations for the pressure and velocity.

For high Reynolds number and 3D computation, the IBTD stabilization was adopted for
the FS method. Applying the Crank–Nicolson technique to the time derivative term of
Equation (2) leads to

un+1=un+Dt
(un

(t
+

Dt2

2
(2un+1/2

(2t
+O(Dt3), (6)
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where un+ l/2= (un+1+un)/2, and O denotes the truncation error. Introducing Equation (2)
to the second-order time derivative of Equation (6) leads to

(u2

(t
#u ·9{u ·9u+9p−Re−192u− f}−

(

(t
{9p−Re−192u− f}, (7)

in which the convective velocity is assumed to be independent of time. The last term of
Equation (7) is approximated as

(

(t
{9pn+1/2−Re−192un+1/2− fn+1/2}

=
1
Dt

{9pn+1−Re−192un+1− fn+1}−
1
Dt

{9pn−Re−192un− fn}+O(Dt). (8)

By introducing Equations (2), (7) and (8) into Equation (6), the time discretization form
of Equation (2), using the IBTD, is

un+1−un

Dt
+un ·9un+9pn+1/2−Re−192un+1/2

−
Dt
2

un ·9{un ·9un+1/2+9pn+1/2−Re−192un+1/2− f}= f, (9)

where the unknown velocity un+1, associated with the convective term, has been replaced
by un in order to construct the linear symmetric matrix to be solved. The last term of the
left-hand side of Equation (9), the IBTD term, will make the dissipative error smaller than
that of the FS method. The spatial discretization of Equation (9) was performed using the
isoparametric quadrilateral elements (bilinear in 2D and trilinear in 3D) for both pressure
and velocity. With the implementation of Equation (9), a larger time increment can be
chosen in contrast to the FS method. This will be advantageous for high Reynolds numbers
and 3D computations.

Figure 1. Case 1: 2D computations at low Reynolds numbers (Re=200, 400 and 600).
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Figure 2. Case 2: 2D computations at high Reynolds numbers (Re=103, 104 and 105).

Figure 3. Case 3: 3D computations at Re=103 and 104.
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3. COMPUTATIONAL MODEL AND BOUNDARY CONDITIONS

The computational domains and the finite element meshes for 2D and 3D flows past the
square columns in tandem are shown in Figures 1–3.

For the low Reynolds number, 2D computation (case 1), a linear triangular element
was employed as shown in Figure 1. The dimension of the flow domain was set at
16d×14d (where d is the column width). The columns were placed with certain spacings
in both the X- and Y-directions; the horizontal spacing, S, was set at 2d, 3d and 5d,
and the relative vertical distance yI (=y/d) was changed from 0.0 to 1.0 by 0.5. The
boundary conditions for Equation (4) were: u=U�=1, 6=0 at the inlet, and 6=0,
Fx=0 at the top and bottom walls (where Fx is the friction force along the wall); natu-
ral boundary conditions were used at the exit. When using the FS method, the Dirichlet
condition at the outlet boundary must be prescribed to solve the PPE. The condition in
this case was obtained by the Shimura–Kawahara scheme [5]. The time-averaged pressure
coefficient was computed for the leeward column and compared with the wind-tunnel
results. Thus, the basic properties of the flow past square columns were investigated.

The finite element mesh using the quadrilateral element was used for the high Reynolds
number 2D computation (case 2) as shown in Figure 2. The domain size of 37d×20d
was chosen to keep the blockage factor as low as 5%. The boundary conditions were
same as those of case 1 except that the pressure Dirichlet condition at the exit was set
at p=0. Consequently, the region in case 2 was made to be wider than that in case 1;
so as not to be influenced by the prescribed condition p=0. In order to clarify the
dependence of aerodynamic coefficients on the Reynolds number in this case, the hori-
zontal and relative vertical distances were fixed at S=3d and yI=0, respectively.

In the study of the effect of 3D flow structure (case 3), the domain width was reduced
from 37d (case 2) to 30.5d as shown in Figure 3(a), while the height of the region was
set at 1d and divided into eight layers. The combination of these sizes was decided ac-
cording to the memory restriction of the computer used. The spacings between the
columns were the same as those in case 2: S=3d and yI=0.0, and each of the layers
consisted of the same number of linear solid elements as shown in Figure 3(b) and (c).
The boundary conditions around the XY-plane were the same as those of case 2, while
the periodic condition was employed in the spanwise Z-direction. This means that the
nodal pressure and velocities at Z=1d surface have the same values as those at the
Z=0 surface.

The total numerical parameters for each case are summarized in Table I.
The experimental pressure distributions around the leeward column were measured in

the 2×2.5 m2 wind-tunnel facility at Kawada Industries, Japan. The turbulence intensity
of the test section is B0.3%, and the Reynolds number based on the uniform flow ve-
locity and column width was 2.7×104.

4. NUMERICAL RESULTS

4.1. 2D simulation at low Reynolds numbers

The computational results at Reynolds numbers 200, 400 and 600, with various combi-
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Table I. Model parameters

Parameter Case 3Case 2Case 1

103, 104, 105 103, 104Reynolds numbers Re 200, 400, 600
Number of grid points 15 368 (2D)31 29413 211 (y/d=1.0)

12 2944 (3D)
25 856 (y/d=1.0) 30 890Number of finite elements 15 064 (2D)

12 0512 (3D)
0.007d 0.0014d 0.0035dMinimun element height d
0.0060 (Re=200, 400) 0.020.02 (Re=103, 104)Time increment Dt
0.0036 (Re=600) 0.01 (Re=105)

200–400 (Re=103)200–1000Averaged time span T( 300–600 (Re=200)
400–700 (Re=104)600–1200 (Re=400)

180–900 (Re=600)

nations of vertical distance yI and horizontal spacing S, were compared with the experi-
mental values (Re=2.7×104) in terms of the qualitative flow properties.

Figure 4 shows the distribution of computed time-averaged pressure coefficients on the
leeward column (S=3d) along with the wind-tunnel results. The referential example of a
single square post is shown in Figure 4(a). It can be seen from this figure that the
differences between each calculation are very small for the single square column. When
the results for the cylinders in tandem are shown graphically with respect to yI, the dif-
ferences are seen more clearly. In the case of yI=0.0, calculated pressure distributions at
Re=400 and 600 are lower on the back and side surfaces, and higher on the front
surface than those of experimental values. On the other hand, the computed results at
Re=200 agree well with the experimental values, as in Figure 4(b). A similar tendency is
recognized in Figure 4(c), in which yI is set at 0.5. When yI=1.0 (Figure 4(d)), each
computational result shows a good agreement with experimental values.

Figure 5 shows another set of results of calculations and experiments performed, where
the horizontal spacing S was set at 2d and 5d, and the vertical distance is fixed at
yI=0.0. The computed pressure distributions coalesce well with experimental values in
each case examined. It is assumed, based on the results presented in Figures 4 and 5,
that the flow pattern around the columns in tandem are stable for different Reynolds
numbers, if the distance between the two columns is adequately wide or narrow.

For a better understanding of the above features, a comparison was made between Re=200
and 400 by obtaining the instantaneous streamlines and pressure contours around the columns
for the case of S=3d and yI=0.0, which showed the most distinct differences between
computational and experimental values. The results are presented in Figures 6 and 7. At
Re=200 (Figure 6), the flow is separated from the leading-edge corners of the windward
column and passed along the imaginary lines of the upper and lower surfaces of the two
columns. Contrary to this, the strong Kármán vortex arises behind the windward column at
Re=400 (Figure 7). The eddy flows down along the surface of leeward column, interacting
with the vortex generated by the downstream column itself. According to the report by
Takeuchi et al. [10], the flow patterns around the tandem columns with various horizontal
arrangements have been classified into two types of states, as shown in Figure 8. The
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computational flow pattern at Re=200 is close to the mode ‘A’, while the computed results at
Re=400 are similar to the mode ‘B’. In their studies, when the flow condition shifted from ‘A’
to ‘B’, the horizontal spacing S was reported as being about 3d ; and both modes were
observed at S=3d. This can be seen in Figure 5, in which the computed results on S=2d
(narrower case) and S=5d (wider case) have qualitatively agreed well with the experimental
values. It may be considered that the experimental flow pattern in the present study for the
case of S=3d was close to the state of the ‘A’ mode. As a result, the computed pressure
coefficients at Re=200 comparatively agreed with the wind-tunnel results.

Figure 4. Time-averaged pressure coefficients at low Reynolds numbers (S=3d).
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Figure 5. Time-averaged pressure coefficients at low Reynolds numbers (S=2d and 5d).

4.2. 2D simulation at high Reynolds numbers

To study the dependence of aerodynamic characteristics on Reynolds number, flow fields
were computed in a higher Reynolds number range (Re=103–105). These properties were
compared with the wind-tunnel results, as in the previous section. The distances S and yI were
fixed at S=3d and yI=0.0, which showed the most noticeable difference between the analysis
and the experiment at low Reynolds numbers.

Figure 9 shows the drag coefficient CD of the leeward column at Reynolds numbers 103–105

and the prevailing frequency fL (non-dimensional value) of the time history of lift force in
combination with the results of Re=200–600 and wind-tunnel tests. It is clear from Figure 9
that the CD value (symbol ) is around 1.0 for Reynolds numbers 103–105, while large
variations of CD are observed at Reynolds numbers below 103. It is assumed that a transient
region exists in the low Reynolds number region where the flow pattern and the basic flow
character change. Expressed in another way, the computed coefficients from 2D analyses
scarcely changed at Reynolds numbers over a certain value. However, the computed CD values
were absolutely different from the experimental values; except the CD at Re=200. On the
other hand, the prevailing frequency fL (symbol �) at Re=200 was much greater than the
experimental value. Thus, in 2D simulations of the flow past square columns in tandem, the
numerical reproduction was hardly improved by the Reynolds numbers.

The pressure coefficients on the leeward column surfaces are shown in Figure 10 at Reynolds
numbers 103, 104 and 105. It is noted that there is little change in the computed results at these
Reynolds numbers, and basically they are similar to the characteristics at Re=400 and 600
(Figure 4(b)). On the other hand, in comparison with the experimental values, the negative
pressure values are smaller on the front surface, and larger on the back surface. Even on the
side surfaces, the calculated pressure shows a reverse trend to the experimental values. To
better understand this phenomenon, the instantaneous pressure contours at Re=104 from
non-dimensional time 1001 to 1004 are presented in Figure 11, together with the surface
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Figure 6. Instantaneous streamlines and pressure contours at Re=200.
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Figure 7. Instantaneous streamlines and pressure contours at Re=400.
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Figure 8. Two types of flow patterns around square columns in tandem [10].

pressure distributions. It can be seen in the pressure-contour diagrams that the vortices formed
behind the windward column are unified with the separated bubbles of the leeward column,
and then flows down along the side surface growing into a large eddy. It seems to be the flow
pattern ‘B’ demonstrated in Figure 8. The surface pressure distribution shown in Figure 11
reveals that both negative and positive pressure fields act on the front surface of the leeward
column; and this is the reason the average pressure coefficient on the front surface is near zero,
as shown in Figure 10. While negative pressure may always exist on both side and back
surfaces, the average pressures on each surface are negative and large, as presented in Figure
10.

Figure 9. Drag coefficient and prevailing frequency of lift force.
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Figure 10. Time-averaged pressure coefficient on leeward column at high Reynolds numbers.

4.3. Effects of 3D computation

This section describes the 3D flow analysis based on the model shown in Figure 3, along
with the analysis performed on the 2D model, in order to show the 3D effects. In order to
study the Reynolds number effects, Re=103 was used for non-dimensional times T=200–400,
and Re=104 for T=400–700. Figures 12 and 13 show the time histories of drag and lift
coefficients in both 2D and 3D analyses. Figure 14 shows the behavior of midpoint velocity in
the Z=0 plane between the columns in which u1, u2 and u3 are the velocity components in the
X-, Y- and Z-directions, respectively.

It can be seen from Figures 12 and 13 at time T=200–400 (Re=103) that there is no
significant difference in CD variation between the 2D and 3D analyses, although 3D CL

variation demonstrates a relatively smaller fluctuation in amplitude than the 2D results.
Judging from changes in midpoint axial velocities shown in Figure 14, it is concluded that the
spanwise velocity u3 starting at about time T=260 reduced the magnitude of the lift
fluctuation in the 3D analysis. However, the axial velocity u2 shows a close correlation to the
lift coefficient in 3D, and it should be a proof that there exists strong and periodic flow past
the gap between two columns. This phenomenon has also been observed in 2D computations
(Figures 7 and 11), so it can be said that the flow in the gap dominates the aerodynamic
characteristics of the leeward column. The CD value in 3D computations at Re=103 showed
a fluctuation centered around a positive (+ ) value because the flow past the gap was
separating at the leading edge of the leeward column, as in the case of the well-known single
square column. Contrary to this, in the wind-tunnel test, the flow between the two columns
seemed to be nearly stagnating, resulting in the experimental drag coefficient of a negative (− )
value at CD= −0.626.

On the other hand, at T=400–700 (Re=104), the CD and CL variations with time in 3D
computations behaved less violently compared with 2D orRe=103 cases. In the 2D analysis,
the CD and CL tended to be similar to the results of Re=103, but with the 3D calculation,
both the drag and lift fluctuations became smaller compared with those of Re=103. Notably,
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Figure 11. Instantaneous pressure contours and surface pressure distributions at Re=104.
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Figure 12. Time history of lift coefficient CD.

the drag showed the center of fluctuation shifting toward a negative (− ) value. It is also found
that the variation of axial velocity u3, at Re=104 and after T=400, is even greater than that
of Re=103; and at the same time, the fluctuation of velocities u1 and u2 is gradually becoming
irregular. It is significant that from the time shortly after T=500, the characteristics of these
coefficients and velocity components suddenly began to change, and it is presumed here that
a mode switching from ‘B’ to ‘A’ occurred. The computed-average drag coefficient for
T=400–700, thus, became CD= −0.573, which is close to the wind-tunnel result.

Figure 13. Time history of lift coefficient CL.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 95–112 (1998)



DIMENSIONAL FLOWS AROUND COLUMNS IN TANDEM ARRANGEMENT 109

Figure 14. Time history of midpoint velocity in 3D computation.

The instantaneous 3D streamlines with pressure isosurfaces at Re=103 and Re=104 are
compared, as shown in Figure 15. It can be seen from Figure 15(a) that the strong vortices
retaining the 2D flow structure were formed behind each column. Consequently, the stream-
lines roll into the spaces behind each cylinder. On the other hand, according to the active
spanwise diffusion, the strong vortex between the columns has dispersed, as in Figure 15(b). As
a result in this case, the streamlines pass over the gap between two columns. This is the reason
for the drag to shift to a negative (− ) value, as seen in Figure 12(b), and it is considered to
cause the changes in fluctuations of drag, lift and midpoint velocity. A comparison in the
streamlines in the XY-plane before and after the mode switching at Re=104 was made as
shown in Figure 16. It is found that the flow pattern before the mode switching, Figure 16(a),
is similar to that of the Re=400 computational results (Figure 7), despite the difference in
model configurations, namely 2D and 3D.

Figure 17 shows the distribution of average pressure coefficients in the 3D analyses. It was
found that the computational results at Re=103 are almost similar to the 2D values (e.g.
Figure 4(b)), while the results at Re=104 tend to be different from those of 2D cases; and the
pressure distribution agrees well with the experimental result. This means that, in the case of
S=3d and yI=0.0, the reproduction of flow pattern plays an important role in improving
consistency with the wind-tunnel result.

5. CONCLUSION

The results are summarized as follows
(1) The pressure coefficient distribution obtained from 2D analysis at low Reynolds

numbers (Re=200–600) agreed with the experimental values, as relative vertical distance yI

was increased. It appears to be a proof that the flow characteristics of the leeward column
approach the properties of a single column with increasing yI. Observations of the instanta-
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Figure 15. Instantaneous streamlines with pressure isosurfaces at Re=103 and 104.

neous streamlines and pressure contours generalized for Re=200 and 400 revealed clear
differences based on their flow patterns. The result at Re=200 seems to have a flow pattern
close to the actual phenomenon; thus, the pressure coefficient distribution at Re=200 agrees
well with the experimental value.

(2) The drag coefficient and prevailing frequency of the lift force evaluated from a 2D
computation at high Reynolds numbers (Re=103–105) scarcely changed with the Reynolds
numbers, and then the time-averaged distribution of surface pressure coefficients showed a
different feature in comparison with the experimental results. Observing the sequential results
of surface pressure distributions at Re=104, the strong vortices passed through the gap
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Figure 16. Instantaneous 3D streamlines in the XY-plane before and after mode switching.

between the columns, and there appeared no distinct difference in flow pattern compared with
the streamline at Re=400. These results suggest that the Reynolds number is not a dominant
parameter reflecting the actual phenomena; at least in the 2D computation of flow around
columns in tandem arrangement (S=3d and yI=0.0).

(3) From the results of the 3D computation at Re=103 and 104, the fluctuations of drag
and lift amplitude decreased with the development of the spanwise flow. The 3D flow structure
at Re=103, which basically has a strong 2D nature, was weakened when the Reynolds number
was increased to 104. This is because the active spanwise diffusion took place with growing
axial velocity u3. As a result, in the case of Re=104, the drag coefficient shifted to the negative
(− ) side, and the fluctuations of both drag and lift coefficients of the leeward column were
clearly decreased. The computed pressure coefficient agreed well with the experimental result.
Thus, Reynolds numbers played an important roll when the analysis was performed with 3D
models.

These results indicate meaningful values of 3D computations in studying the flow character-
istics around structures in tandem, although it is difficult to say that the 3D flow structure has
been clearly captured in this study. However, it can be considered that the 2D computation is
also useful in the calculation of average flow characteristics when the structures are set at
sufficiently wider (or narrower) spacings.

Figure 17. Time-averaged pressure coefficient in 3D computation.
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The square columns in tandem handled here had complicated flow structures. Such
computational models presented difficult tasks to reproduce the actual flow condition in
numerical simulation. Thus, it is necessary to perform computations with Reynolds numbers
equivalent to those in tests, giving considerations to the 3D flow structure. It will be necessary
in future to accumulate numerical examples of other structures and their spatial arrangements
when the application of CFD to practical design operations is considered.
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